Success!

Your message was successfully sent.

Publications

NeurIPS 2024, D3S3: Data-driven Simulations

Read the Study

Authors

A. S. Joglekar, 2024

Publication Date

October 16, 2024

Publications

Generative Neural Reparameterization for Differentiable PDE-Constrained Optimization

Abstract

Partial-differential-equation (PDE)-constrained optimization is a well-worn technique for acquiring optimal parameters of systems governed by PDEs. However, this approach is limited to providing a single set of optimal parameters per optimization. Given a differentiable PDE solver, if the free parameters are reparameterized as the output of a neural network, that neural network can be trained to learn a map from a probability distribution to the distribution of optimal parameters. This proves useful in the case where there are many well performing local minima for the PDE. We apply this technique to train a neural network that generates optimal parameters that minimize laser-plasma instabilities relevant to laser fusion and show that the neural network generates many well performing and diverse minima.

Publications

NeurIPS 2024, D3S3: Data-driven Simulations

Read the Study

Authors

A. S. Joglekar, 2024

Publication Date

October 16, 2024