Demonstration of a hydrodynamically equivalent burning plasma in direct-drive inertial confinement fusion
Abstract
Focussing laser light onto the surface of a small target filled with deuterium and tritium implodes it and leads to the creation of a hot and dense plasma, in which thermonuclear fusion reactions occur. In order for the plasma to become self-sustaining, the heating of the plasma must be dominated by the energy provided by the fusion reactions—a condition known as a burning plasma. A metric for this is the generalized Lawson parameter, where values above around 0.8 imply a burning plasma. Here, we report on hydro-equivalent scaling of experimental results on the OMEGA laser system and show that these have achieved core conditions that reach a burning plasma when the central part of the plasma, the hotspot, is scaled in size by at least a factor of 3.9 ± 0.10, which would require a driver laser energy of at least 1.7 ± 0.13 MJ. In addition, we hydro-equivalently scale the results to the 2.15 MJ of laser energy available at the National Ignition Facility and find that these implosions reach 86% of the Lawson parameter required for ignition. Our results support direct-drive inertial confinement fusion as a credible approach for achieving thermonuclear ignition and net energy in laser fusion.