Success!

Your message was successfully sent.

Publications

Nature Physics 20, 751–757 (2024

Read the study

Authors

V. Gopalaswamy, C. A. Williams, R. Betti, D. Patel, J. P. Knauer, A. Lees, D. Cao, E. M. Campbell, P. Farmakis, R. Ejaz, K. S. Anderson, R. Epstein, J. Carroll-Nellenbeck, I. V. Igumenshchev, J. A. Marozas, P. B. Radha, A. A. Solodov, C. A. Thomas, K. M. Woo, T. J. B. Collins, S. X. Hu, W. Scullin, D. Turnbull, V. N. Goncharov, K. Churnetski, C. J. Forrest, V. Yu. Glebov, P. V. Heuer, H. McClow, R. C. Shah, C. Stoeckl, W. Theobald, D. H. Edgell, S. Ivancic, M. J. Rosenberg, S. P. Regan, D. Bredesen, C. Fella, M. Koch, R. T. Janezic, M. J. Bonino, D. R. Harding, K. A. Bauer, S. Sampat, L. J. Waxer, M. Labuzeta, S. F. B. Morse, M. Gatu-Johnson, R. D. Petrasso, J. A. Frenje, J. Murray, B. Serrato, D. Guzman, C. Shuldberg, M. Farrell & C. Deeney.

Publication Date

February 05, 2024

Publications

Demonstration of a hydrodynamically equivalent burning plasma in direct-drive inertial confinement fusion

Abstract

Focussing laser light onto the surface of a small target filled with deuterium and tritium implodes it and leads to the creation of a hot and dense plasma, in which thermonuclear fusion reactions occur. In order for the plasma to become self-sustaining, the heating of the plasma must be dominated by the energy provided by the fusion reactions—a condition known as a burning plasma. A metric for this is the generalized Lawson parameter, where values above around 0.8 imply a burning plasma. Here, we report on hydro-equivalent scaling of experimental results on the OMEGA laser system and show that these have achieved core conditions that reach a burning plasma when the central part of the plasma, the hotspot, is scaled in size by at least a factor of 3.9 ± 0.10, which would require a driver laser energy of at least 1.7 ± 0.13 MJ. In addition, we hydro-equivalently scale the results to the 2.15 MJ of laser energy available at the National Ignition Facility and find that these implosions reach 86% of the Lawson parameter required for ignition. Our results support direct-drive inertial confinement fusion as a credible approach for achieving thermonuclear ignition and net energy in laser fusion.

Publications

Nature Physics 20, 751–757 (2024

Read the study

Authors

V. Gopalaswamy, C. A. Williams, R. Betti, D. Patel, J. P. Knauer, A. Lees, D. Cao, E. M. Campbell, P. Farmakis, R. Ejaz, K. S. Anderson, R. Epstein, J. Carroll-Nellenbeck, I. V. Igumenshchev, J. A. Marozas, P. B. Radha, A. A. Solodov, C. A. Thomas, K. M. Woo, T. J. B. Collins, S. X. Hu, W. Scullin, D. Turnbull, V. N. Goncharov, K. Churnetski, C. J. Forrest, V. Yu. Glebov, P. V. Heuer, H. McClow, R. C. Shah, C. Stoeckl, W. Theobald, D. H. Edgell, S. Ivancic, M. J. Rosenberg, S. P. Regan, D. Bredesen, C. Fella, M. Koch, R. T. Janezic, M. J. Bonino, D. R. Harding, K. A. Bauer, S. Sampat, L. J. Waxer, M. Labuzeta, S. F. B. Morse, M. Gatu-Johnson, R. D. Petrasso, J. A. Frenje, J. Murray, B. Serrato, D. Guzman, C. Shuldberg, M. Farrell & C. Deeney.

Publication Date

February 05, 2024